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Abstract—A key step in ultrasound image formation is digital
beamforming of signals sampled by several transducer elements
placed upon an array. High-resolution digital beamforming intro-
duces the demand for sampling rates significantly higher than the
signals’ Nyquist rate, which greatly increases the volume of data
that must be transmitted from the system’s front end. In 3-D ultra-
sound imaging, 2-D transducer arrays rather than 1-D arrays are
used, and more scan lines are needed. This implies that the amount
of sampled data is vastly increased with respect to 2-D imaging.
In this work, we show that a considerable reduction in data rate
can be achieved by applying the ideas of Xampling and frequency
domain beamforming (FDBF), leading to a sub-Nyquist sampling
rate, which uses only a portion of the bandwidth of the ultra-
sound signals to reconstruct the image. We extend previous work
on FDBF for 2-D ultrasound imaging to accommodate the geome-
try imposed by volumetric scanning and a 2-D grid of transducer
elements. High image quality from low-rate samples is demon-
strated by simulation of a phantom image composed of several
small reflectors. Our technique is then applied to raw data of a
heart ventricle phantom obtained by a commercial 3-D ultrasound
system. We show that by performing 3-D beamforming in the fre-
quency domain, sub-Nyquist sampling and low processing rate are
achievable, while maintaining adequate image quality.

Index Terms—Array processing, beamforming, compressed
sensing (CS), ultrasound.

I. INTRODUCTION

S ONOGRAPHY is one the most widely used imaging
modalities due to its relative simplicity and radiation-free

operation. It uses multiple transducer elements for tissue visu-
alization by radiating it with acoustic energy. The image is
typically composed of multiple scanlines, obtained by sequen-
tial insonification of the medium using focused acoustic beams.
Reflected signals detected at each transducer element are sam-
pled prior to digital processing. Beamforming is a key step in
image formation, generating receive sensitivity profiles focused
at any desired point within the image (2-D) or volume (3-D).
The resulting beamformed signal, characterized by enhanced
signal-to-noise ratio (SNR) and improved angular localization,
forms a line in the image, which we refer to as beam.

The aforementioned approach, used by most commercial
systems today, is characterized by two important parameters:
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sampling and processing rate, and frame or volume rate.
Sampling rates required to perform high-resolution digital
beamforming are significantly higher than the Nyquist rate of
the signal [1]. Taking into account the number of transducer
elements and the number of lines in an image, the amount
of sampled data that need to be transferred to the processing
unit and digitally processed is enormous, even in 2-D imaging
setups. This motivates methods for sampling rate reduction. In
addition, regardless of computational power, the frame/volume
rate in this approach is limited by the time required to transmit a
beam, to receive and process the resulting echoes, and to repeat
the process for all image lines.

Among the focus areas, the main focus area in the study
of ultrasonic scanning is the development of real-time 3-D
ultrasound imaging, which overcomes major constraints of 2-D
imaging. 3-D volume acquisition eliminates operator depen-
dence in the imaging process: once the 3-D data set is obtained,
any plane within it is available for visualization by appropriate
cropping and slicing. In addition, a variety of parameters can
be measured from a 3-D image in a more accurate and repro-
ducible way compared to 2-D imaging [2], [3], [4]. Finally,
many anatomical structures, e.g., the mitral valve, are intrin-
sically 3-D [5], implying that their complex anatomy cannot be
captured efficiently with 2-D techniques.

A straight forward approach to 3-D volume acquisition is to
use a mechanically rotating 1-D probe [6]. However, this results
in extremely low volume rates, leading to unacceptable motion
artifacts in echocardiography applications. Fully sampled 2-D
arrays, an extension of the 1-D array to both lateral and eleva-
tion directions, are the most advanced technology for intrinsic
3-D acquisition. Such arrays allow for significant improvement
in frame rate and real-time capabilities. This is obtained by
parallel processing, namely, electronically receiving data from
several points in both lateral and elevation dimensions within
the 3-D volume simultaneously [7], [8].

Despite the high frame rate, angular resolution, and SNR,
fully sampled 2-D arrays pose several engineering challenges
[2], [9]. Due to the significantly increased number of elements,
which can be as high as several thousand, the main difficulty
from a hardware perspective is connecting the elements to
electronic channels. In addition, the amounts of sampled data,
acquired at each transmission, create a bottleneck at the data
transfer step and pose a severe computational burden on the
digital signal processing hardware. To avoid large connecting
cables, leading to unacceptable probe size and weight, and to
reduce power and size, as well as data rates, several techniques
for element number reduction have been proposed.
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A. Related Work

In a sparse aperture, only a subset of the 2-D grid of ele-
ments is used upon reception and/or transmission. Several
studies investigate strategies for optimal subset choices [8]–[14]
which limit the degradation in image quality due to energy loss
and high grating and sidelobes. In [15], Savord and Solomon
present a subarray beamforming approach allowing for sig-
nificant reduction in the number of channels by suboptimal
analog beamforming, also referred to as microbeamforming.
This method has been implemented in leading commercial
systems. Another promising method, synthetic aperture, was
adopted from sonar processing and geological applications
[16], [17]. This approach exploits multiplexing to control a fully
sampled 2-D array with a small number of electronic channels.
Although providing improved image quality, synthetic aperture
suffers from reduced frame rate and huge amounts of sampled
data. The concept of separable beamforming proposed in [18]
and [19] allows for computationally efficient implementation of
2-D beamforming by splitting it into two separable 1-D steps.
However, the overall amount of data remains the same since all
the transducer elements are sampled.

Even when the number of elements is reduced, the amount of
sampled data is still very large due to the high number of scan
lines. Consider imaging of a 3-D volume, using K scan lines in
each one of K 2-D cross sections of the volume. Scanning the
entire volume yields a total of K ×K scan lines. To maintain
the angular resolution in each one of the K cross sections in
the 3-D frame in comparison to 2-D ultrasound imaging, one is
forced to essentially quadrate the amount of data with respect
to 2-D imaging, given the same number of transducers. Lorintiu
et al. propose to skip the acquisition of up to 80% of image lines
and then recover the missing data using a sparse representation
of the ultrasound volume in learned overcomplete dictionaries
[20], [21]. This work, however, does not address the number
of elements involved in acquisition of each one of the obtained
scanlines.

In 2-D imaging, a number of strategies for data rate reduc-
tion have been proposed, which exploit signal structure and rely
on compressed sensing (CS) techniques [22], [23]. Most of the
proposed methods can be divided into two categories. The first
allows for sampling and recovery of each individual detected
signal at a low rate assuming sufficiently high SNR [24]–[27].
The second deals with recovering a beamformed signal from its
low-rate samples [28]–[30] assuming that one has access to the
continuous-time beamformed data. In practice, the beamformed
signal is formed digitally at a high rate from samples of each of
the individual received signals.

A practical method to acquire low-rate beamformed data
from low-rate samples of the received signals is reported in
[31]. An entire framework enabling compressed ultrasound
imaging in 2-D, including sub-Nyquist data acquisition from
each transducer element, low-rate processing, and beamformed
signal reconstruction is proposed in [32]. This approach is
based on beamforming in the frequency domain. Specifically,
the Fourier coefficients of the beam are computed as a lin-
ear combination of those of the individual detected signals,
obtained from their low-rate samples. When all the beam’s

Fourier coefficients within its bandwidth are computed, the
sampling and processing rates are equal to the effective Nyquist
rate. The beam in time is then recovered by an inverse Fourier
transform. When further rate reduction is required, only a sub-
set of the beam’s Fourier coefficients is obtained, which is
equivalent to sub-Nyquist sampling. Recovery then relies on an
appropriate model of the beam, that compensates for the lack
of frequency data, and optimization methods. Low-rate data
acquisition is based on the ideas of Xampling [24]–[34], which
obtains the Fourier coefficients of individual detected signals
from their low-rate samples.

B. Contributions

In this work, we generalize beamforming in frequency devel-
oped for 2-D imaging [31], [32] to 3-D imaging, to enable data
rate reduction. Our approach can be applied in conjunction with
any of the existing methods for element or image line reduction.

In 3-D imaging, the same low-rate sampling scheme can
be applied to the individual signals detected at the elements
of the 2-D transducer, leading to considerable rate reduction,
as elaborated on in Section III-B. However, to benefit from
the rate reduction, 3-D beamforming must be performed in
frequency similarly to the 2-D setup. We prove that the relation-
ship between the beam and the detected signals in the frequency
domain, the core of beamforming in frequency, holds for 3-D
imaging as well.

We then derive a frequency domain formulation of beam-
forming that accounts for the 2-D geometry of the transducer
array and the 3-D geometry of the medium. We show that 3-D
frequency domain beamforming (FDBF) can be implemented
efficiently due to the decay property of the distortion function
translating the dynamic beamforming time delays into the fre-
quency domain. When sub-Nyquist sampling and processing
are applied, signal structure needs to be exploited to recover
the beam from the sub-Nyquist set of its Fourier coefficients.
To this end we prove that a 3-D beamformed signal obeys a
finite rate of innovation (FRI) [22] model, just as in 2-D.

We demonstrate our results through simulations and exper-
iments and examine the performance of 3-D FDBF in terms
of the lateral point spread function (LPSF), axial point spread
function (APSF), and SNR. We next evaluate the effect of chan-
nel rate reduction, an alternative approach to reduce the number
of samples, on image quality. Such a reduction is not required
in 2-D imaging since the number of transducer elements is rel-
atively small. However, in 3-D imaging with 2-D arrays, such
a reduction is often unavoidable due to hardware limitations.
Reducing the amount of transducer elements enhances noise
levels in the image and deteriorates the lateral resolution, while
our technique mainly affects the axial resolution. We conclude
that when the element number reduction is unavoidable, incor-
poration of 3-D FDBF does not cause further degradation in
lateral resolution and SNR, while providing additional data rate
reduction. Finally, we incorporate our approach into a commer-
cial imaging system performing subarray beamforming. In this
setup, the element reduction and 3-D FDBF are applied in con-
junction. The results show that rate reduction obtained by 3-D
FDBF does not introduce further image quality degradation.
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Fig. 1. M ×N transducers placed in the x–y plane. An acoustic pulse is trans-
mitted in a direction θx, θy . The echoes scattered from perturbations in the
radiated tissue are received by the array elements.

We note that 3-D frequency-domain dynamic beamforming
based on the 2-D fast Fourier transform (FFT) was proposed for
sonar systems back in the 1990s [35]. This approach, however,
relies on the assumption that the signals used for insonification
are narrow band. This is true for sonar, where the bandwidth is
two orders of magnitude smaller than the central frequency. In
medical imaging, the central frequency is approximately equal
to the bandwidth, so that this approach is inapplicable.

This paper is organized as follows. In Section II, we review
standard time-domain processing for a 3-D imaging setup. In
Sections III and IV, we describe the principles of 3-D FDBF,
image reconstruction, and achieved rate reduction. Simulation
results and experiments are presented in Section V. Section VI
concludes this paper.

II. IMPLEMENTATION OF BEAMFORMING IN TIME

Beamforming is a common signal-processing technique that
enables spatial selectivity of signal transmission or reception
[36]. In ultrasound imaging, it allows for SNR and lateral res-
olution improvement. Modern imaging systems transmit and
receive acoustic pulses using multiple transducer elements.
These elements comprise an array, generating a transmitted
beam which is steered spatially by applying appropriate time
delays to each element. The transducer receives acoustic pulses
scattered by tissue structures, which are then sampled and pro-
cessed digitally to reconstruct an image line. Reconstruction is
performed with a technique known as dynamic beamforming,
where image quality is enhanced by summing the signals at
individual elements after their alignment by appropriate time
delays.

To derive our frequency-domain implementation of 3-D
beamforming, we begin by introducing standard time-domain
processing. Consider a grid of M ×N transducers located in
the x–y plane, as depicted in Fig. 1. The geometry imposed by
3-D ultrasound imaging requires the use of two steering angles
and thus a 2-D array of transducers. The entire grid transmits
pulses into the tissue. We note that the grid may have a small
curvature along the z-axis, so the array elements do not lie in
the same plane. For the sake of simplicity, this type of curvature
is not displayed in Fig. 1.

We choose a reference element (m0, n0) placed at the origin,
and denote the distances along the x- and y-axes to the (m,n)
element by δm, δn, respectively. We also denote the height of
the (m,n) element with respect to the origin by δzm,n for the
case where there exists a curvature along the z-axis. Note that
we assume δzm0,n0

= 0, so that the reference element is not
necessarily included in the transducer grid and is defined for
mathematical convenience. Let us consider a pulse transmit-
ted along a scan line specified by spatial angles θx, θy . Setting
t = 0 at the moment of transmission from the (m0, n0) ele-
ment, it can be shown that at time t ≥ 0 the pulse reaches the
coordinates

(x(t), y(t), z(t)) = ct(xθ, yθ, zθ) (1)

with

xθ =
sin θx cos θy√

1− sin2 θx sin
2 θy

yθ =
cos θx sin θy√

1− sin2 θx sin
2 θy

(2)

zθ =
cos θx cos θy√

1− sin2 θx sin
2 θy

.

Here, c is the propagation velocity in the medium. A point
reflector located at this position scatters the energy, such that
the echo is detected by all array elements at a time depending
on their locations.

Denote by ϕm,n(t; θx, θy) the signal detected by the (m,n)
element and by τ̂m,n(t; θx, θy) the time of detection. Then,

τ̂m,n(t; θx, θy) = t+
dm,n(t; θx, θy)

c
(3)

where

dm,n(t; θx, θy) =√
(x(t)− δm)2 + (y(t)− δn)2 + (z(t)− δzm,n)

2 (4)

is the distance traveled by the reflection. Beamforming involves
summing the signals detected by multiple receivers while com-
pensating for the differences in detection time.

Using (3), the detection time at (m0, n0) is
τ̂m0,n0

(t; θx, θy) = 2t since δm0
= δn0

= δzm,n = 0. We
wish to apply a delay to ϕm,n(t; θx, θy) such that the resulting
signal, denoted by ϕ̂m,n(t; θx, θy), satisfies

ϕ̂m,n(2t; θx, θy) = ϕm,n(τ̂m,n(t; θx, θy); θx, θy).

Doing so, we can align the reflection detected by the
(m,n) receiver with the one detected at (m0, n0). Denoting
τm,n(t; θx, θy) = τ̂m,n(t/2; θx, θy) and using (3), the following
aligned signal is obtained:

ϕ̂m,n(t; θx, θy) = ϕm,n(τm,n(t; θx, θy); θx, θy)

τm,n(t; θx, θy) =

1

2

(
t+

√
t2 + 4|γm,n|2 − 4t

(
γmxθ+γnyθ+γz

m,nzθ
))

(5)
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where we defined γm = δm/c, γn = δn/c, γz
m,n = δzm,n/c, and

|γm,n| =
√

γ2
m + γ2

n + (γz
m,n)

2.

The beamformed signal may now be derived by averag-
ing the aligned signals. We assume that the echo reception
process involves a subset of the transducer array, denoted by
M ⊆ {(m,n)|1 ≤ m ≤ M, 1 ≤ n ≤ N}

Φ(t; θx, θy) =
1

NRX

∑
(m,n)∈M

ϕ̂m,n(t; θx, θy). (6)

Here, NRX=|M| is the number of transducers participating in
the reception process. We note that in order to obtain optimal
performance in terms of SNR and angular resolution, all trans-
ducer elements should be used. However, as mentioned in the
introduction, the number of active elements is often reduced
due to practical constraints.

In practice, beamforming is carried out digitally, rather than
by manipulation of the analog signals. The signals detected
at each element must be sampled at a sufficiently high rate
to apply the high-resolution time shifts defined in (5). This
implies that the signal is sampled at rates significantly higher
than its Nyquist rate, to improve the system’s beamforming res-
olution and to avoid artifacts caused by digital implementation
of beamforming in time. From now on, we will denote this rate
as the beamforming rate fs, which usually varies from 4 to 10
times the transducer central frequency [1], [32].

We conclude this section by evaluating the number of sam-
ples typically required to obtain a single volume for some
predefined image depth. Our evaluation is based on the imag-
ing setup used in the simulation in Section V-A. The simulation
assumes an ultrasonic scanner comprising a 32× 32 grid of
transducers, all of which are active both on transmission and
reception (NRX = 1024). Such an array constitutes a reference
for comparison of image quality resulting from different meth-
ods for data rate reduction. The radial depth of the scan is set as
r = 5.5 cm with a speed of sound of c = 1540 m/s, yielding a
time of flight of T = 2r/c � 71.43 µs. The acquired signal is
characterized by a band-pass bandwidth of 1.4 MHz centered
at a carrier frequency of f0 = 3MHz. It is sampled at a rate of
fs = 18.25MHz to provide sufficient beamforming resolution
leading to N = 1304 samples taken at each transducer. Every
frame contains 21× 21 scan lines, such that the scanned vol-
ume is a square pyramid with an opening angle of 14.3◦. This
set of scanning angles is a relatively narrow set with a typi-
cal margin between subsequent beam lines. Assuming all 1024
elements are sampled, the total number of samples that must
be processed to display a single frame is 21× 21× 1024×
1304 = 5.89× 108. This number of samples is huge even for
a moderate imaging depth of 5.5 cm; the imaging depth typi-
cally required for cardiac imaging is around 16 cm. Achieving a
reasonable frame rate using such an amount of samples is infea-
sible for any low-cost ultrasound machine. A common solution
is to use a sparsely populated array of transducer elements.
This typically causes reduction in angular resolution and, more
significantly, low SNR. A method that reduces the amount of
samples while using the entire transducer grid in the reception
stage will address this problem.

III. BEAMFORMING IN FREQUENCY

To substantially reduce the number of samples taken at
each transducer element, we aim to use the low-rate sampling
scheme proposed in [32]. To this end, we derive a frequency-
domain formulation of 3-D beamforming allowing to compute
the Fourier coefficients of the beam from the detected signals’
low-rate samples. In this section, we show that similarly to
2-D imaging, the Fourier coefficients of the 3-D beam can be
computed as a linear combination of the Fourier coefficients of
the received signals. We note that due to the dynamic nature
of beamforming, such a relationship is not trivial and requires
appropriate justification.

A. Frequency-Domain Implementation of Beamforming

We start from the computation of the Fourier series coef-
ficients of the beamformed signal Φ(t; θx, θy). It is shown
in Appendix A that the support of Φ(t; θx, θy) is limited to
[0, TB(θx, θy)), where TB(θx, θy) is given by

TB(θx, θy) = min
(m,n)∈M

τ−1
m,n(T ; θx, θy) (7)

with τm,n(t; θx, θy) defined in (5). Furthermore, TB(θx, θy) ≤
T , where T is defined by the transmitted pulse penetration
depth.

Consider the Fourier series of the beamformed signal {c[k]}
in the interval [0, T ]

c[k] =
1

T

∫ T

0

Φ(t; θx, θy)I[0,TB(θx,θy))e
−i 2π

T ktdt (8)

where I[a,b] is the indicator function, used to reduce noise
since the useful information in Φ(t; θx, θy) is restricted to
[0, TB(θx, θy)). In order to find a relation between c[k] and the
Fourier coefficients of ϕm,n(t; θx, θy), we substitute (6) into (8)

c[k] =

1

NRX

∑
(m,n)∈M

1

T

∫ T

0

ϕ̂m,n(t; θx, θy)I[0,TB(θx,θy))e
−i 2π

T ktdt

=
1

NRX

∑
(m,n)∈M

ĉm,n[k] (9)

where we defined

ĉm,n[k] =
1

T

∫ T

0

ϕm,n(τm,n(u; θx, θy); θx, θy)

× I[0,TB(θx,θy))e
−i 2π

T kudu. (10)

Replacing the integration variable u with τ = τm,n(u; θx, θy),
we get

u =
τ2 − |γm,n|2

τ − (γmxθ + γnyθ + γz
m,nzθ

)
du =

τ2 + |γm,n|2 − 2τ · (γmxθ + γnyθ + γz
m,nzθ

)
[
τ − (γmxθ + γnyθ + γz

m,nzθ
)]2 dτ
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where xθ, yθ, zθ are defined in (2). Plugging this into (10) and
renaming the integration variable τ → t, results in

ĉm,n[k] =
1

T

∫ T

0

qk,m,n(t; θx, θy)ϕm,n(t; θx, θy)e
−i 2π

T ktdt

(11)

with

qk,m,n(t; θx, θy) = I[|γm,n|,τm,n(TB(θx,θy);θx,θy))(t)

× t2 + |γm,n|2 − 2t · (γmxθ + γnyθ + γz
m,nzθ

)
(
t− (γmxθ + γnyθ + γz

m,nzθ
))2

× exp

{
−i

2π

T
k

(
t · (γmxθ + γnyθ + γz

m,nzθ
)− |γm,n|2

t− (γmxθ + γnyθ + γz
m,nzθ

)
)}

.

(12)

Note that in contrast to (10), (11) contains a nondelayed ver-
sion of ϕm,n(t; θx, θy), while the delays are applied through
the distortion function qk,m,n(t; θx, θy), defined in (12). This
allows us to express ϕm,n(t; θx, θy) in terms of its Fourier
series coefficients, denoted by cm,n[l]. We also make use of the
Fourier coefficients of qk,m,n(t; θx, θy) with respect to [0, T ],
denoted by Qk,m,n;θx,θy [l], and rewrite (11) as follows:

ĉm,n[k] =
∑
l

cm,n[l]
1

T

∫ T

0

qk,m,n(t; θx, θy)e
−i 2π

T (k−l)dt

=
∑
l

cm,n[k − l]Qk,m,n;θx,θy [l]. (13)

The substitution of the distortion function by its Fourier coef-
ficients effectively transfers the beamforming delays defined in
(5) to the frequency domain. We note that qk,m,n(t; θx, θy) is
independent of the received signals, namely, it is defined solely
by the array geometry. Its Fourier coefficients, therefore, are
computed offline and stored as a look-up table (LUT).

According to Proposition 1 in [31], which can be easily
extended to the 3-D imaging setup, ĉm,n[k] may be approxi-
mated sufficiently well when we replace the infinite summation
in (13) by a finite one

ĉm,n[k] �
L2∑

l=−L1

cm,n[k − l]Qk,m,n;θx,θy [l]. (14)

The Fourier coefficients of the beam c[k] are now easily
calculated by plugging (14) into (9)

c[k] � 1

NRX

∑
(m,n)∈M

L2∑
l=−L1

cm,n[k − l]Qk,m,n;θx,θy [l]. (15)

The approximation in (14) relies on the decay properties of
{Qk,m,n;θx,θy [l]}. According to the results reported in [32],
most of the energy of the Fourier coefficients of the 2-D distor-
tion function is concentrated around the dc component, allow-
ing for efficient implementation of beamforming in frequency.
This decaying property is retained in 3-D beamforming: numer-
ical studies show that most of the energy of {Qk,m,n;θx,θy [l]}
is concentrated around the dc component, irrespective of the

   

Fig. 2. {Qk,m,n;θx,θy [l]}, the Fourier coefficients of qk,m,n(t; θx, θy),
display a rapid decay around the dc component.

choice of k,m, n, θx, θy . We assume that for l < −L1 and
l > L2, {Qk,m,n;θx,θy [l]} are several orders of magnitude lower
and thus can be neglected. The choice of L1, L2 controls the
approximation quality. We display these decay properties in
Fig. 2, where Qk,m,n;θx,θy [l] is plotted as a function of l for
k = 300, m = 7, n = 21, θx = 0.28(rad), and θy = 0.36(rad).

B. Rate Reduction by Beamforming in Frequency

We now show that FDBF allows generating a frame using a
reduced number of samples of the individual signals in compar-
ison time-domain beamforming. When the signal’s structure is
not considered, this is done by avoiding the oversampling factor
required by digital implementation of time-domain beamform-
ing. In this case, the processing is performed at the effec-
tive Nyquist rate defined by the signal’s effective bandwidth.
Further rate reduction can be obtained when the FRI structure of
the beamformed signal is taken into account, and CS techniques
are used for its recovery.

Using Xampling, we can obtain an arbitrary and possibly
nonconsecutive set κ, composed of K frequency components
of the individual detected signals, from K pointwise samples
of the signal filtered with an analog kernel s∗(t), designed
according to κ. In ultrasound imaging with modulated Gaussian
pulses, the transmitted signal has one main band of energy. As
a result, the analog filter takes on the form of a band-pass fil-
ter, leading to a simple low-rate sampling scheme [32]. The
choice of κ dictates the bandwidth of the filter and the resulting
sampling rate.

As can be seen in (15), in order to calculate an arbitrary
set κ of size K of Fourier coefficients of the beamformed
signal, only K + L1 + L2 Fourier coefficients of each one of
the individual signals are required. The image line is then
reconstructed from the beamformed signal’s Fourier coeffi-
cients {c[k]}. Calculating the entire set of Fourier coefficients
in the bandwidth of the beamformed signal β, |β| = B, implies
B � L1 + L2 and, therefore, allows one to obtain all the infor-
mation in the frequency domain while avoiding oversampling
required by time-domain beamforming. This is due to the fact
that the low-rate sampling scheme described above obtains
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B + L1 + L2 ≈ B Fourier coefficients of the individual signals
required for FDBF from their B low-rate samples.

Thus, performing FDBF by calculating the entire bandwidth
of the beamformed signal achieves a rate reduction of approxi-
mately N/B with respect to time-domain beamforming, where
N is the number of samples required by the beamforming
rate fs.

Further rate reduction is possible by acquiring a part of the
bandwidth of the beamformed signal, μ ⊂ β, |μ| = M . We may
calculate it from M + L1 + L2 ≈ M samples of the individual
signals, which are sampled at a rate that is N/M lower than the
standard beamforming rate fs. In Section IV, we take advan-
tage of the beamformed signal structure to reconstruct the beam
from its partial frequency data. A detailed discussion on the
achieved rate reduction is provided in Section V-A.

IV. RECOVERY FROM SUB-NYQUIST SAMPLES

When all the beam’s Fourier coefficients within its effective
bandwidth are computed, the beam in time is recovered by an
inverse Fourier transform. When only a subset of the coeffi-
cients is obtained by sub-Nyquist sampling and processing, we
exploit the structure of the beam to reconstruct it from its partial
frequency data.

According to [24], we may model the detected signals at
the individual transducer elements, {ϕm,n(t; θx, θy)}(m,n)∈M,
as FRI signals. That is, we assume that the individual signals
can be regarded as a sum of pulses, all replicas of a known
transmitted pulse shape

ϕm,n(t; θx, θy) =

L∑
l=1

ãl,m,nh(t− tl,m,n). (16)

Here, h(t) is the transmitted pulse shape, L is the number of
scattering elements in the direction of the transmitted pulse
(θx, θy), {ãl,m,n}Ll=1 are the unknown amplitudes of the reflec-
tions, and {tl,m,n}Ll=1 are the times at which the reflection from
the lth scatterer arrives at the (m,n) element.

It is shown in Appendix B that the beamformed signal in 3-D
imaging approximately satisfies the FRI model, just as it does
in 2-D imaging [31]. Namely, it can be written as

Φ(t; θx, θy) �
L∑

l=1

b̃lh(t− tl) (17)

where h(t) and L are defined as above, {b̃l}Ll=1 are the unknown
amplitudes of the reflections, and {tl}Ll=1 are the times at which
the reflection from the lth scatterer arrives at the reference
element (m0, n0).

Having acquired the Fourier coefficients c[k] as described
in the previous section, we now wish to reconstruct the beam-
formed signal. Since the beam satisfies the FRI model, our task
is to extract the unknown parameters, {b̃l}Ll=1 and {tl}Ll=1, that
describe it.

Using (17), the Fourier coefficients of Φ(t; θx, θy) are given
by

c[k] =
1

T

∫ T

0

Φ(t; θx, θy)e
−i 2π

T kt

� 1

T

∫ T

0

(
L∑

l=1

b̃lh(t− tl)

)
e−i 2π

T kt

=
L∑

l=1

b̃l

(
1

T

∫ T

0

h(t− tl)e
−i 2π

T k(t−tl)

)
e−i 2π

T ktl

= h[k]

L∑
l=1

b̃le
−i 2π

T ktl (18)

where h[k] is the kth Fourier coefficient of h(t). By quantizing
the delays {tl}Ll=1 with quantization step Ts =

1
fs

, such that
tl = qlTs for ql ∈ Z, we may write the Fourier coefficients of
the beamformed signal as

c[k] = h[k]

N−1∑
l=0

ble
−i 2π

N kl. (19)

Here, N = �T/Ts�, bl = b̃lδl,ql , and δa,b is the Kronecker
delta.

We conclude that recovering the beamformed signal in time
is equivalent to determining bl in (19) for 0 ≤ l ≤ N − 1. In
vector–matrix notation, (19) can be rewritten as

c = HDb = Ab (20)

where c is a vector of length K with kth entry c[k], H is a
K ×K diagonal matrix with kth entry h[k], D is a K ×N
matrix whose rows are taken from the N ×N discrete fourier
transform (DFT) matrix corresponding to the relevant Fourier
indices of Φ(t; θx, θy), and b is a column vector of length N
with lth entry bl.

We wish to extract the values of b, which fully describe the
beamformed signal. To do so, we rely on the assumption that a
typical ultrasound image is composed of a relatively small num-
ber of strong reflectors in the scanned tissue. In other words, we
assume the vector b to be compressible, similarly to [32]. We
then find b by solving an 
1 optimization problem

min
b

‖b‖1 s.t. ‖Ab− c‖2 ≤ ε. (21)

In practice, we solve (21) using the NESTA algorithm [37]
which works well when the signal of interest has high dynamic
range. NESTA uses a single smoothing parameter μ selected
based on a tradeoff between accuracy and speed of conver-
gence. We choose this parameter empirically to achieve optimal
performance with respect to image quality.

To summarize this section, a step-by-step description of the
3-D low-rate imaging process is given in Algorithm 1.

V. SIMULATIONS AND RESULTS

To analyze the performance of the outlined methodology
relative to standard time-domain beamforming in a manner
independent of the specifics of any individual system, a k-
Wave [38] simulation of a 3-D ultrasound system is presented.
We first simulate the acoustic imaging of a noise free volume
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Algorithm 1. Image acquisition algorithm

1: Calculate the Fourier coefficients of qj,m,n (t; θx, θy),
defined in (12). This calculation is performed offline and
does not affect the system’s real-time performance.

2: Choose the approximation quality by determining
L1, L2, defined according to the decay properties of{
Qk,m,n;θx,θy [l]

}
l
, displayed in Fig. 2. An adequate

approximation can be performed by choosing L1, L2 to be
no greater than 10.

3: Choose a subset κ of Fourier coefficients of the beamformed
signal to be used in reconstruction.

4: Acquire the Fourier coefficients of the individual signals rel-
evant for reconstruction of the subset κ, according to [32].
Namely, at each transducer element (m,n) ∈ M, acquire
its Fourier coefficients {cm,n [l]}k2+L2

l=k1+L1
, where k1, k2 are

the lowest and highest indices in κ.
5: Perform the calculation in (14).
6: Compute the beamformed signal’s Fourier series coeffi-

cients:

c[k] =
1

NRX

∑
(m,n)∈M

ĉm,n[k].

7: Solve the optimization problem (21) to extract the vector b
that characterizes the beamformed signal.

8: Incorporate the known temporal shape of the pulses, h (t),
onto the vector b, and perform standard postprocessing
steps, such as log-compression and interpolation.

containing three point scatterers and analyze the effect of the
achieved rate reduction on the lateral and APSFs. The perfor-
mance of low-rate 3-D FDBF is compared to that of standard
time-domain processing.

An alternative approach to reduce the number of samples is
to use a sparse array upon reception, which also reduces the
hardware complexity. To evaluate the effect of element num-
ber reduction on image quality, time-domain beamforming is
also performed using data collected only from the elements
placed along the array’s main diagonals. The results verify that
the two strategies affect different aspects of image quality and
show the advantage of 3-D FDBF in the presence of noise com-
pared to time-domain beamforming with the reduced number of
elements. Finally, we incorporate the proposed approach into a
commercial imaging system performing subarray beamforming
to reduce the number of receiving elements. In this setup, the
element reduction and 3-D FDBF are applied in conjunction.
The results show that rate reduction obtained by 3-D FDBF
does not introduce further image quality degradation.

A. Simulation Setup

We simulate acoustic imaging of a volume of size 28 mm ×
28 mm × 55 mm. The volume contains three point reflectors,
placed at depths 26, 31.5, and 37 mm from the center of a square
planar 2-D transducer grid. The reflectors are located around
θx = −7.5◦, 0◦, and 7.5◦, respectively, with θy = 0◦. The
reflector at depth 31.5 mm is located at the focus point of the

TABLE I
NUMBER OF SAMPLES PER VOLUME FOR EACH PROCESSING METHOD

transmitted pulse. The array is composed of 32× 32 = 1024
elements, spaced 140 µm apart. The central pulse frequency
is 3 MHz with a bandwidth of 1.4 MHz and the sampling
rate is fs = 18.25 MHz. A penetration depth of T = 2r/c �
71.43 µs yields N = 1304 samples at each transducer element,
so that the bandwidth of the beamformed signal contains B =
200 Fourier coefficients. A single volume comprises 21× 21
scanned angles.

Denote by κ the set of Fourier coefficients of the beam,
obtained by the proposed method. To verify the performance for
different rate reduction factors, the collected data are processed
using our technique with K = B, K = B/2, and K = B/3 cor-
responding to the entire, half, and one third of the effective
bandwidth, respectively, where K is the cardinality of κ. The
results are compared to those obtained by time-domain beam-
forming performed both using full and diagonal grids upon
reception.

First, we assess the amount of samples required to obtain
a volume. For time-domain beamforming using the full grid,
we must process 21× 21× 1024×N = 5.89× 109 samples.
Using only the main diagonals of the transducer grid, this
amount reduces to 21× 21× 64×N = 36.81× 106 samples.
Applying FDBF, the reconstruction relied on K = 200, K =
100, and K = 67 Fourier coefficients of the beamformed sig-
nal. To calculate these coefficients, as described in Section III,
we chose L1 = L2 = 10. The total amount of Fourier coef-
ficients required at each transducer is ν = K + L1 + L2. A
sampling approach proposed in [32] allows us to obtain these
coefficients from ν samples of individual detected signals.
Thus, a single volume can be produced by processing a total
of 21× 21× 1024× ν samples. The total number of samples
required for each processing method is displayed in Table I. We
note that FDBF, using about half the bandwidth of the beam, is
comparable to time-domain processing using only the diagonal
elements of the grid in terms of processing rate.

Cross sections of the resulting 3-D volumes are displayed
in Fig. 3. It can be seen that all reflectors are clearly seen
for all processing methods. The frequency-domain beamformed
images display lower noise levels than the time-domain beam-
formed image reconstructed using a partial set of the transducer
grid. The advantage of FDBF in the presence of noise is
discussed in detail in Section V-C.

B. Lateral and APSFs

We next compare our proposed method to time-domain
beamforming by calculating the LPSF and APSF characterizing
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Fig. 3. Cross sections of the simulated 3-D imaging of three point reflectors placed on a plane. (a)–(e) display the θy = 0◦ cross section, whereas (f)–(j) display
the θx = 0◦ cross section. (a) and (f) display images acquired with time-domain beamforming, using the entire transducer grid. (b) and (g) display images acquired
with time-domain beamforming, using the diagonals of the transducer grid. (c) and (h), (d) and (i), (e) and (j) display images acquired with FDBF using B, B/2,
and B/3 DFT coefficients of the beamformed signal, respectively.

Fig. 4. Normalized LPSFs for various processing methods.

each processing method. The LPSFs are acquired for the reflec-
tor placed at the transmit focus point and plotted on constant-r
arcs. The APSFs show the sum of the constant—θx and θy lines
on which point reflectors are placed. The LPSFs are normalized
such that the maximum at θy = 0◦ is set to 1, while the APSFs
are normalized to unit energy. The PSFs are presented in Figs. 4
and 5.

The properties of the LPSFs are displayed in Table II. We
see that the LPSFs obtained with 3-D FDBF for different rate

reduction factors display very similar properties to the LPSF
acquired with time-domain beamforming using the full trans-
ducer grid and exhibit improved results over the LPSF acquired
with time-domain beamforming using only the diagonals of the
grid. This is an expected result, since our method reconstructs
the axial lines of the image and does not have a direct effect
on the lateral resolution. The widths of the peak located at the
focus point, acquired for each reconstructed method, are shown
in Table III. As seen in the table and in Fig. 5, the APSFs
deteriorate when the number of Fourier coefficients used to
reconstruct the image is decreased. We note that energy leak-
age from the peaks is increased when less Fourier coefficients
are used in the reconstruction process. However, the effect of
APSF deterioration becomes visible only when less than half
the bandwidth is used for signal reconstruction.

Reducing the amount of transducer elements enhances noise
levels in the image and deteriorates the lateral resolution,
while our proposed reconstruction method affects mainly the
axial resolution. Acknowledging this fact, we may consider
a midway approach, where rate reduction is achieved both
by reducing the amount of transducer elements and applying
frequency-domain beamforming. The more dominant factor for
rate reduction will be dictated according to the tradeoff stated
above. Another conclusion is that when the element number
reduction is unavoidable, the incorporation of 3-D FDBF does
not cause further degradation in lateral resolution and SNR,
while providing additional data rate reduction.

In addition to the axial and lateral resolutions, another impor-
tant aspect that has to be regarded is the SNR. It can be seen
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TABLE II
LPSFS PROPERTIES

TABLE III
APSFS PROPERTIES

in Fig. 5 that the line acquired with time-domain beamform-
ing using partial grid data contains high levels of noise at
the far field, since less transducer elements participate in the
delay-and-sum process. This holds even when no noise was
incorporated in the simulation—the “effective noise” stems
from reflections corresponding to the numerical solution of the
simulation code.

C. Simulation With Noise

To show the advantage of our method over partial grid time-
domain beamforming in terms of SNR, another simulation is
conducted. A pulse is transmitted in the θx = 0, θy = 0 direc-
tion. A single large reflector is placed at the focus depth of
the transmitted pulse. The signals detected at the transducer
elements are contaminated by white Gaussian noise imitating
the thermal noise of the system. We then proceed to recon-
struct the θx = 0, θy = 0 beam using all five methods described
in Section V-A. In addition, clean beams, without the addi-
tion of noise, are obtained for all five methods. We denote the
noisy and clean beamformed lines by Φnoise(t) and Φclean(t),
respectively.

We define the SNR of a beam as the ratio between the energy
stored in a segment of length 5λ around the main peak of the
beam, where λ is the wavelength corresponding to the car-
rier frequency of the transmitted pulse, and the energy of the
noise in the beamformed line, defined as n(t) = Φnoise(t)−
Φclean(t). That is,

SNR = 10 log10

(∫ |Φclean(t)|2dt∫ |n(t)|2dt
)
. (22)

The results are displayed in Table IV. As expected, the reduc-
tion in number of elements participating leads to a dramatic

Fig. 5. Normalized APSFs for various processing methods.

TABLE IV
SNR OF PROCESSING METHODS

reduction in SNR. In contrast, 3-D FDBF displays higher SNR
even over time-domain processing when the entire grid of trans-
ducer elements is used. A remarkable point is that the SNR
increases when less Fourier coefficients are involved in the
reconstruction of the beam. This is not surprising since the
noise is equally spaced over the entire spectrum of the sys-
tem: the fewer Fourier coefficients used in the reconstruction
process, the less noise involved.

To conclude, 3-D FDBF using half the bandwidth is compa-
rable to standard time-domain processing with diagonal trans-
ducer elements in terms of data rate reduction but outperforms
it by 20 dB in terms of SNR.

D. Application on a Commercial System

We now demonstrate our method on data collected using a
commercial 3-D ultrasound system, while imaging a phantom
of a heart ventricle. Images of the entire volumetric scan,
taken from a specific angle, for demonstration are shown in
Fig. 6. The frames are reconstructed using time-domain beam-
forming and frequency-domain beamforming with K = B/2
coefficients of the beamformed signal. The complex structure
of the phantom allows us to test the performance of the pro-
posed method on volumes containing multiple strong reflectors
as well as weak reflectors known as speckle.
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Fig. 6. 3-D imaging of a phantom of a heart ventricle. (a) displays the time-
domain reconstruction of the frame, while (b) displays the frequency-domain
reconstructed frame, using K = B/2 Fourier coefficients of the beamformed
signal with 12-fold rate reduction.

The transducer grid is composed of 2000 transducers. The
entire grid participates in the transmission stage, while analog
subarray beamforming [15] is performed in the reception stage.
This suboptimal processing method is required to adjust the
number of elements to the number of electronic channels. To
put it explicitly, an appropriate constant analog delay is applied
on a group of 20 elements prior to summation. The result-
ing 100 signals are treated as effective elements. In standard
processing, they are sampled and fed to electronic channels
for dynamic beamforming. To verify the performance of the
proposed method, FDBF is applied on the resulting 100 sig-
nals instead of time-domain processing following the analog
subarray beamforming stage.

We processed the collected data in the same manner as in
the previous section, using time-domain beamforming requir-
ing 3120 samples per image line, and FDBF for K = B and
K = B/2 with B = 506. When B Fourier coefficients are com-
puted, the processing is performed at the signal’s effective
Nyquist rate and oversampling is avoided leading to 6-fold
rate reduction. FDBF with B/2 coefficients implies 12-fold
rate reduction. Cross sections of the 3-D frames acquired are
displayed in Fig. 7.

The image obtained by low-rate FDBF for K = B is virtually
identical to the one obtained by standard time-domain process-
ing at a high rate. This result is expected since for K = B all
the information is obtained in frequency. We also note promi-
nent similarity between the image obtained at the sub-Nyquist
rate and the original one. In particular, the strong reflectors
and the speckle pattern are preserved. The above results prove
that FDBF can be combined with analog subarray beamform-
ing without significant reduction in image quality. In this way,
channel number reduction resulting from analog subarray pro-
cessing is combined with sampling rate reduction obtained
by FDBF paving the way to real-time low-cost 3-D imaging
system.

VI. CONCLUSION

In this work, a solution to one of the major bottlenecks in
3-D imaging, the amount of sampled data, is introduced. The

number of samples taken at each transducer element is reduced
by applying the low-rate sampling scheme presented in [32]
to the individual signals detected by the 2-D grid. To benefit
from the achieved data rate reduction, we prove that the subse-
quent processing, namely, 3-D beamforming, can be performed
directly in frequency. The translation of beamforming to the fre-
quency domain allows bypassing oversampling and to obtain
4- to 10-fold rate reduction without any assumptions on the
signal’s structure.

When the signal’s structure is exploited further rate reduction
is possible. We prove that the 3-D beamformed signal obeys
an FRI model, allowing to sample and process the signals at
sub-Nyquist rates while retaining sufficient image quality.

The performance of the proposed method is verified in terms
of both LPSF and APSF. It is shown that in accordance with
our expectation, it has no effect on LPSF, while the APSF is
virtually the same when the entire set of Fourier coefficients of
the beam within its effective bandwidth is computed. For sub-
Nyquist processing APSF is slightly reduced; however, when
half the beam’s bandwidth is used, the degradation is negligible.
We also demonstrate the advantage of 3-D FDBF in the pres-
ence of noise. The simulations with noise show that low-rate
3-D FDBF outperforms not only time-domain processing with
a partial grid of elements, but also the time-domain processing
with a full grid.

Finally, we incorporate the proposed framework into a com-
mercial imaging system and combine it with analog subarray
beamforming, required to adjust the number of elements to the
number of electronic channels. The results verify that no further
image degradation is introduced and that our approach can be
used in conjunction with spatial subsampling techniques.

Our results pave the way for low-cost real-time capability
crucial for further development of 3-D ultrasound imaging.

APPENDIX A
BEAMFORMED SIGNAL SUPPORT

We consider the FRI model for the individual signals in (16).
According to our second assumption in Appendix B, h(t) is the
known pulse-shape with a support of [0,Δ) for some known Δ
satisfying Δ � T .

We neglect all reflections that reach the (m,n) transducer at
times greater than T , considering them as noise. Therefore, for
all 1 ≤ l ≤ L and (m,n) ∈ M

tl,m,n +Δ ≤ T. (23)

Using (31), (23) and the fact that τm,n(t; θx, θy) is nondecreas-
ing for t ≥ 0, we get

tl ≤ τ−1
m,n(T −Δ; θx, θy) (24)

with τ−1
m,n(t; θx, θy) being the inverse of τm,n(t; θx, θy) with

respect to t

τ−1
m,n(t; θx, θy) =

t2 − |γm,n|2
t− (γmxθ + γnyθ + γz

m,nzθ)
(25)

for t ≥ |γm,n|. Assuming the pulse shape has a negligible sup-
port with respect to the penetration depth, Δ � T , and using
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Fig. 7. Cross sections of the 3-D imaging of a phantom of a heart ventricle. (a)–(c) display the θy = 0◦ cross section, whereas (d)–(f) display the θx = 0◦ cross
section. (a) and (d) display images acquired using time-domain beamforming. (b), (e) and (c), (f) display images acquired with frequency-domain beamforming
with 6- and 12-fold rate reduction, respectively.

the fact that (24) holds for all (m,n) ∈ M, we get, for all
1 ≤ l ≤ L

tl ≤ min
(m,n)∈M

τ−1
m,n(T ; θx, θy). (26)

Since {tl}Ll=1 denote the arrival times of the echoes to the ref-
erence element, we can set the upper bound TB(θx, θy) on the
beamformed signal as

TB(θx, θy) = min
(m,n)∈M

τ−1
m,n(T ; θx, θy). (27)

We are now left to show that TB(θx, θy) < T . This holds
since we can always find an element (m1, n1) ∈ M such

that γm1
and γn1

have opposite signs to that of xθ and yθ,
respectively. Furthermore, we can always place the reference
element (m0, n0) such that γz

m1,n1
= 0 for a specific choice of

(m1, n1) ∈ M. Thus,

TB(θx, θy) ≤ τ−1
m1,n1

(T ; θx, θy)

=
T 2 − |γm1,n1

|2
T + |γm1

xθ|+ |γn1
yθ|

≤ T 2 − |γm1,n1
|2

T
≤ T. (28)
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By applying τm,n(t; θx, θy) on both sides of (27), we also have

τm,n(TB(θx, θy); θx, θy) ≤ T. (29)

APPENDIX B
FRI MODEL OF THE BEAMFORMED SIGNAL

We assumed in (16) that the individual signals obey the
FRI model. We wish to prove that the beamformed signal
approximately obeys the FRI model, so that (17) holds.

In order to show this, we rely on three reasonable assump-
tions. First, we assume that 2(|γm|+ |γn|+ |γz

m,n|) ≤ tl.
Such a constraint may be forced by applying time-dependent
apodization, in such a way that ϕ(t; θx, θy) is omitted from
the delay and sum process in (6) for t ≥ 2(|γm|+ |γn|+
|γz

m,n|). Second, we assume that the pulse h(t), transmitted
to the medium from each of the individual transducer ele-
ments and reflected back from scatterers in the medium, is
compactly supported on the interval [0,Δ). Finally, we assume
Δ � tl. Again, such a constraint may be forced by applying
apodization.

Using (16), the individual distorted signals in (6) are of the
form

ϕ̂m,n(t; θx, θy) =
L∑

l=1

ãl,m,nh(τm,n(t; θx, θy)− tl,m,n).

(30)

The resulting signal comprises L pulses, which are distorted
versions of the pulse h(t).

Suppose that some of these pulses originated in reflec-
tors located off the central beam axis. When we combine the
individual signals in (6) to calculate the beamformed signal,
these pulses will be attenuated due to destructive interfer-
ence. Therefore, when considering the beamformed signal
Φ(t; θx, θy), we are concerned only with the pulses which orig-
inated in reflectors located along the central beam axis. For
convenience, we assume that all pulses in (30) satisfy this
property—those that do not will vanish in Φ(t; θx, θy).

The time of arrival at the (m,n) element tl,m,n is related
to the time of arrival at the (m0, n0) element according to the
alignment introduced in (5). Thus, we can express the delays of
the individual signals, {tl,m,n}Ll=1, in terms of tl, as

tl,m,n = τm,n(tl; θx, θy). (31)

We may then rewrite (30) as

ϕ̂m,n(t; θx, θy) =
L∑

l=1

ãl,m,nh̃(t; θx, θy) (32)

where h̃(t; θx, θy) = h(τm,n(t; θx, θy)− τm,n(tl; θx, θy)).
Applying our second assumption, we find that the support of

h̃(t; θx, θy) is defined by the requirement

0 ≤ τm,n(t; θx, θy)− τm,n(tl; θx, θy) < Δ. (33)

It can be shown that the inequalities in (33) are satisfied for
t ∈ [tl, tl +Δ′), where

Δ′ = 2Δ
tl,θ +Δ

tl,θ + 2Δ+ tl − 2(γmxθ + γnyθ + γz
m,nzθ)

(34)

and we defined

tj,θ =
√

t2l + 4|γm,n|2 − 4tl(γmxθ + γnyθ + γz
m,nzθ). (35)

Since 2(|γm|+ |γn|+ |γz
m,n|) ≤ tl and the fact that

|xθ|, |yθ|, |zθ| ≤ 1, we have

tl − 2(γmxθ + γnyθ + γz
m,nzθ)

≥ tl − 2(|γmxθ|+ |γnyθ|+ |γz
m,nzθ|)

≥ tl − 2(|γm|+ |γn|+ |γz
m,n|)

≥ 0.

Thus, Δ′ ≤ 2Δ, and therefore h̃(t; θx, θy) = 0 for t /∈ [tl, tl +
2Δ). Let us write any t ∈ [tl, tl + 2Δ) as t = tl + η, with 0 ≤
η < 2Δ. Then,

h̃(t; θx, θy) = h(τm,n(tl + η; θx, θy)− τm,n(tl; θx, θy)).
(36)

Using our second assumption that Δ � tl and η < 2Δ, we
have η � tl. We then approximate the argument of h(·) in (36)
to first order

τm,n(tl + η; θx, θy)− τm,n(tl; θx, θy). (37)

To find the support explicitly, we expand the above inequal-
ity. For the left-hand side, we find that

τm,n(t; θx, θy)− τm,n(tl; θx, θy) = σl,m,n(θx, θy) + o(η2)
(38)

where

σl,m,n(θx, θy)

=
1

2

⎛
⎝1 + tl − 2(γmxθ + γnyθ + γz

m,nzθ)√
t2l − 4(γmxθ + γnyθ + γz

m,nzθ)tl + 4|γm,n|2

⎞
⎠ .

(39)

We now extend our assumption that 2(|γm|+ |γn|+
|γz

m,n|) ≤ tl, and assume that |γm|+ |γn|+ |γz
m,n| � tl.

Hence, |γm,n| =
√

|γm|2 + |γn|2 + |γz
m,n|2 < |γm|+ |γn|+

|γz
m,n| � tl. Using this assumption, we get σl,m,n(θx, θy) →

1. Replacing η = t− tl and substituting back to (36), results in

h̃(t; θx, θy) ≈ h(t− tl), t ∈ [tl, tl + 2Δ).

Combining this result with (32) and using the fact that
h(t− tl) = 0 for t /∈ [tl, tl + 2Δ), we get

ϕ̂m,n(t; θx, θy) ≈
L∑

l=1

ãl,m,nh(t− tl). (40)

Finally, plugging this back into (6)



BURSHTEIN et al.: SUB-NYQUIST SAMPLING AND FOURIER DOMAIN BEAMFORMING 715

Φ(t; θx, θy) =
1

NRX

∑
(m,n)∈M

ϕ̂m,n(t; θx, θy)

≈ 1

NRX

∑
(m,n)∈M

L∑
l=1

ãl,m,nh(t− tl)

=
L∑

l=1

1

NRX

∑
(m,n)∈M

ãl,m,nh(t− tl)

=

L∑
l=1

b̃lh(t− tl) (41)

showing that the beamformed signal obeys an FRI model.
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